
Journal ~f Engineering Physics and Thermophysics, Vol. 73. No. I, 2000 

ALGORITHMIC AND PROGRAM SOFTWARE 
FOR COMBINATORIAL SIMULATION OF THE 
THERMAL REGIME OF SPACE OBJECTS 

V. S. Khokhulin UDC 536.2 

The main content and basic principles of combinatorial mathematical simulation of the thermal regime 
for various structures and technical systems are revealed. Attention is paid to the fact that combinato- 
rial simulation of the thermal regime requires the development of specialized algorithmic and program 
software, which admits flexible transformation of the parameters and structure of the initial mathemati- 
cal model in the course of investigation. A brief analysis of the algorithms attd programs developed is 
presented. 

Space hardware as a whole is characterized by nonstandard approaches to arrangement and design. This 
is primarily explained by the very high functionality of spacecraft (S) and by the need to implement the re- 
quired design characteristics under rigid mass, energy, and overall-dimension restrictions. Furthermore, it 
should be taken into account that a spacecraft must often operate under extreme conditions [i] (thermal, radia- 
tive, on exposure to vacuum, high pressures, aggressive media, etc.), the majority of spacecraft being thin- 
walled structures. 

Elements forming the structure of a spacecraft have different functional purposes. However, proceeding 
from unified laws of  design, these elements can be combined by a variety of general features. Among them 
are: the geometric features of structural elements (shells, including shells of revolution, plates, etc.); the 
methods for joining together structural elements of various dimensions; the presence and method of force stiff- 
ening of thin-walled structures; the presence of hydraulic heat-exchange main lines or heat pipes, etc. in the 
composition of the structure. 

Usually, in investigating the thermal regime of a spacecraft, just as of any another technical system, 
there is an evolutionary process of determination and generalization of the regularities of  its functioning, which 
consists in investigating the response of the structure considered to a change in external actions, to a change in 
the system parameters, the replacement of materials applied, etc. The evolutionary process of analyzing the 
thermal regime of  the spacecraft can be implemented most successfully if, in forming mathematical thermal 
models and the corresponding algorithmic software, provision is made for their combinatorial change. 

1. Basic Principles of Combinatorial  Analysis of Thermal  Regime. Let us consider the basic princi- 
ples of combinatorial analysis [2] of  the thermal regime of an unpressurized spacecraft. We will assume that in 
tbrming a mathematical model for the thermal regime, the definition domain of the problem is 

D = Din2 + D m 1 + Dm0 + Dh + Dh0 = 

Nn2 Nml Nm 0 N h NI~I 

= U D~2)+ U DUO+ U D(c°+ g DUO+ Y D (°i), 

J2=l Jl=l Ct=I jh=l ~h=l 

(1) 

in which we consider the set Din2 of two-dimensional distributed elements, the set Dm! of one-dimensional 
distributed elements, and the set Dm0 of  concentrated elements. We will also assume that a hydraulic channel 

Moscow Aviation Institute, Moscow, Russia. Translated from hazhenemo-Fizicheskii Zhumal, Vol. 73, 
No. 1, pp. 90-100, January-February, 2000. Original article submitted April 17, 1999. 

1062-0125/2000/7301-0087525.00 @2000 Kluwer Academic/Plenum Publishers 87 



consists of the set Dh of segments of pipelines or heat pipes and the set Dh0 of hydraulic units, at which the 
separation or coalescence of the heat-transfer agent or thermal contact of the heat pipes occur. 

Now we consider a generalized formulation of the problem of mathematical simulation of the thermal 
regime of the unpressurized spacecraft. Let, in the domain D, the models of the following thermophysical pro- 
cesses be determined: 

L (O (T (T'>ti~))) - F ( 0  J2 = !, N,n,  • 
m 2  " - - -  m 2  ' - ' 

(2) 

L (j') (T (X--')(Jl))) --  F (/0 
m l  - -  ml ' Jl = 1, N m l  , (3) 

L(m (T (x(m)) = F(m])), O~ = 1, Nmo" (4) 
m 0  

L~ ") (T (x-->(/"))) = F~ &) , Jh = 1, N h ; (5) 

L(%) (T (x(%))) t- t%) (6) 
h O  - -  - - h O  ' ~h = 1, N~). 

Here Eqs. (2) and (3) simulate heat conduction processes in the two-dimensional and one-dimensional distri- 
buted structural elements; Eqs. (4), the thermal state in the concentrated elements of the structure; Eqs. (5), the 
thermal regime of the heat-transfer agent in the elements of the thermal control system; Eqs. (6), the thermal 
state of the heat-transfer agent at the hydraulic units or thermal contact in the conjugation zone of the heat 
pipes. 

For logical unification of individual models (2)-(6) within the framework of the generalized model, we 
introduce the relations of incidence for the model in the form of: 

1) the joining conditions 

OL (/2)-(J~) (x-+(i~))) (7) m2 (T (x-->~O), T = 0 ,  

OL ~i2)-(i') (T (x -+(iO) T (x-+q0)) = 0 (8) 
m 2  " - ' 

3L O~-)-(m (T (x --->(i2)) T (x(m)) = 0 ,  
m 2  

(9) 

OL u')-<) (T (~<)) T (.~U]))) = 0 (lO) 
m l  " ' ' 

(ll)  

2) the balance relations 

8L~ h)-0~) (T (x-+0"')), T (x--~(i~))) = 0" (12) 
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N..  
J2d[ 

E 
j :=l  

N I  ,or 

2; 
.i,=1 

NIl,~X h 

E 
jh = 1 

tp(/•d,) • (/2Jp (T (x-~q0)), m2 (T (x-">q2))) = ml 
( t 3 )  

...(/pco ..,.. (a).. 
q3(nQ; et) (T (.v--)'(/')))= ¢qtJmO [ 1  ( X ) ) ,  

(14) 

qw%) ~ 'h '%)  (T (Y----'>(/'h))) -~ OhO (T (X(Ot~t))) . 
(15) 

In the course of  combinatorial analysis of the thermal state of the spacecraft a change both in the pa- 
rameters and in structure of  the initial thermal model is possible.  The content of  the change in the model  pa- 
rameters can be seen from the following examples: 

1) change in the models of  the processes considered 

Lr~ (T (x-~(/-~))) = F0"2)m2 --9' (Lt~2~)'(T (x---~2))) = (F U')'m-2) , 

• , _ q j ) ,  

LO', ) (T(x--~qO))=F (/,) (Lqm'~)'(T(x--~i,))) (Pm~) 
ml ml ~ = ' 

L(m (T (x'm))= ~ ) ,  --> (L(n~)" (T (x(m))= (F(maO)) ' mO 

L(/,) (.V-~(i,,))) -(/0 " h (T = t~, ~ (L~")) ' (T (x-~(/h))) = (F~"))" , 

L(%) (%) (%,). (%). I~ (T (x(%))) = Fh0 ~ (Lho)  (T (x(%))) = ( F h o )  , 

2) change in the joining conditions 

' - ~ , ) - * ~ )  ' ( ~ ( / b ) )  
~L q2)-0~) (T (x -+(i2)) T (x-->(/2))) = 0 --~ (dLm- 2 ) (T (x -+(/p) T . - = 0 m2 ' ' ' 

~2)-(i,) ' (x--r(/O), T (x--~"))) 0 ~L q2)-(/O (T (x --->(/2)) T (x->~/'))) = 0 -+ (c-)Lm2 ) ( T .  - = 1112 ' 

q2)-(~).. 0L (/2)-(c0 (T (x--'r~J2)), T (x(a))) = 0 --+ (~Lm2 ) (T (x --->~2)) T (x(a))) = 0 
m2 ' ' 

• - 0 0 - ( J ] )  ' " 
~L (j')-~j~) (T  (x ---->(i')) 1" (x-~(/'))) = 0 ---> ( O t m l  ) (T  (X-mr(/')), T (X-"~(/'))) = 0 

ml ' 

0L c/')-(c° (T (x -+q0) T (x(a))) = 0 --> (OL -(a)). (T (x -->(/')) T (x(a))) = 0 ml ' ' ' 

L h (T (x-~(/h)), T (X--->(/h))) = 0 ---~ (0L n ) (T (x-+(/Q), T (x-->0"))) = 0 ; 

3) change in the balance relations 
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N. 
Jzdl 

Z 
J2=l 

q)(J#,) , T  ,..--)q~).. (i)q2d,) (T (x--~q'))) 
m, ~ ~,1 I,X " )) ---- ml 

N JSl 

--,Z 
.]2=1 

(q)(m/2;')) ' (T (x--~(/-'))) .~(LJ,) = (q"m'l (T (x--~q')))) ' , 

N j¢O'. 

(i~,a) 
Z (Pml 

j l = 1 

(T (x--~O"))) = (I)~i~o°') (T (xm))) --~ 

i-> 

N Jr ,ct 

Z 
Jl=l 

((p(im'[CO)" (T (x--~(/'))) = ((I) (i''(z) (T (xm))))" , 
X--rn 0 

N. 
Jh,O~h 

-(/.'%) = ,,h(/. "%) Z %, (T(x--~(i"))) ~hO (T(%)) -> 
.ih= 1 

Njh.C•h 

.i .= 1 

(i~,.%), tch(&.%) (Ph ) (T  (x-)(i"))) = (T(%))) "" V"" hO 

4) change in the number of elements considered in the thermal model 

Nm2 ~ (Nm2)', Nml ---> (Nml)" , Nn, I ~ (Nm0)', N h ----> (Nh)' ' Nh0 ~ (Nh0)'. 

Thus, in the course of the combinatorial investigation of the thermal regime there is a possibility not 
only to study the reference variant of the spacecraft, but also, as necessary, to refine flexibly the model, leav- 
ing its structure virtually unchanged. This process can be performed either by changing the model parameters, 
determined on the j'2th two-dimensional element, the j~th one-dimensional element, and on the (zth concentrated 
element; on the jhth heat-transfer agent, the CZhth element of conjugation of the heat pipes or pipelines of the 
convective cooling system; or by means of the transformation of the incidence conditions and the balance re- 
lations, and also by refining the number of elements of the generalized model. 

The second alternative of a change in the generalized model is the formation of a new structure of the 
thermal model that corresponds to the purposes of a specific investigation. In particular, this can be imple- 
mented by changing the dimensionality of the model: 

L~Z~ (T (x--~(J-')))= F ~  ---r L ~2) (T (X-~(iP))= F (iz)" 
m3 m3 ' 

L (jl) F (i') --~ L (/') (T (X---")'(Jl))) = F (il) ,nl ( T  (x-->(J'))) = ml m. m n  " n = 2 ,  3" 

• (~) CT (x--~m))) ~(a) ~mO l(cO (T (x((Z))) = F(r~ ---) L,n n ,-- = r , w  , ; n = 1, 2, 3 

It is obvious that the change in the model of only some j•th two-dimensional element (Eqs. (2)) and of 
some jlth element (Eqs. (3)) causes changes in the models of other elements (Eqs. (4)-(6)) and in the models 
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of joining conditions (Eqs. (7)-(12)) and balance relations (Eqs. (13)-(15)), thus leading to a global change in 
the initial model (Eqs. (2)-(15)). 

There will be a similar situation in the case where in solving the problem (Eqs. (2)-(15)), it is neces- 
sary to analyze in more detail, for example, the thermal state of an arbitrary concentrated element o~. The ther- 
mal model of  this element can be represented by the model of a higher level (Eqs. (2)-(4)), which increases 
naturally the dimensionality of the entire problem and also leads to the transformation of the initial generalized 
model. However, in this case there occurs in essence the incorporation of subcomplexes of the same type into 
the model complex (Eqs. (2)-(4)). 

The presented basic principles of combinatorial analysis of the thermal regime can form a methodical 
basis for developing universal algorithmic and program software of  the mathematical simulation and thermal 
design of the objects of space hardware that must ensure the solution of  the tollowing main problems: deter- 
mination of a rational thermal regime of a spacecraft; investigation and selection of a regular variant for the 
support system of the thermal regime of a spacecraft; investigation of  the influence of changes in the environ- 
mental action and of heat releases of the systems and units of a spacecraft on the themml regime of  spacecraft, 
study of the influence of a change in the design of a spacecraft, the replacement of materials applied, and a 
change in the characteristics and parameters of the support system of thermal regime and the parameters of 
radiative heat exchangers, contact resistances, etc. on the thermal state of the spacecraft; analysis of  the thermal 
state of any structural element, each device, unit, system, etc. 

2. Formation of the Combinatorial  Mathematical Model. We consider this process using as an ex- 
ample the solution of the problem of mathematical simulation for the thermal regime of the spacecraft struc- 
ture. Let us assume that, in the composition of  the structure, it is possible to separate a certain set of 

Nm2 
two-dimensional thin-walled elements (plates, shells, etc.) determined in the region Din2 = L.)D (]2) , the set of 

j2=l 
Nm I 

one-dimensional elements (ribs, rods, supports, frames, etc.) determined in the region Dml = U D (h) , and the 
Jl=l 

mlno 
set of concentrated elements having a homogeneous temperature (the region Din0 = t..) D (co)). 

(z= 1 
Assuming that the problem under consideration is determined in the region 

Nm2 N,n I Nmo 

D=Dm2+Dml +Din0 = (,..) D(/2)+ U D(J~)+ U D (c0, (16) 
j2=l jl=l o~=1 

we present the mathematical model for the thermal regime of the structure in the following manner: 

N a 

v x -~(j~)~ D ) ,  J a = l , N s ,  k,..) D (j~)=Dm8 ' 8 = 1 , 2 :  
j6--I 

OT 
(1 - °) p r) c ,  v) = 

6 
Z L!,~ ) T+(I-~I~ 8,)q~(~(i~)'T't)+ l---L---- 
~=~ V (x -->(~)) 

X 

8 N,,f~ 

× Z 

J~J~ 

E (X --')'U~)) ~" (x--)'(Jl~)' T ~ "  - " S(]SJl~)s,b (x--~(Js)) ~x~B)  I 
(i(/13)~9(J8)) 

1 + - -  
v (~u~)) 

X 
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Nm~ 

x E  _ ( ida).  ~,/~) S(/d13 ) • 

+ m  

f3= t .i13=1 
J13~ia 

Nlnll 

1 2: 
V (.~@) ~=~ 

( 1 - "/5,s,o~ ) t~s,a ( / (x(~))  - T (x-f-~ia))) s.a (D'c°~9~'~') (17) 

+ m  

L q d = a r  (i~)a I ((t.~) S (xq;)) ~. I S 1 . , .  X xx~ ) (x~iS)) , 
. _~ " 3-r~  ) )  . 

N(/t~) 

qv (x--~(j~), T, t) = E (1 - '-hr l~(i~) ('t'---~qr9)) qhr (ih) (X-->q*)' T, t) + 

ihr=l 

N (~) 
s 

1 E (l--~(si~(x-~qa)))'qli~ (x-4qa) T't)'s(i~)(X-'->qa)) ; 
v ( . ~ @ )  " , .  - , ~.v 

is= 1 

T (x-->(i*)) I ~ ~ = T o (x-'~(@) " 

(~8) 

(19) 

(20) 

T CY >(ia)~ I ,- J i . ~ G  r "~' = Tb ( ' ~ @ )  
(21) 

o r  

s (.~@) X ( .~@, T) 3.~"' 3T9 - ~(O (~o~)  T, 0" 
_ _  - -  t / b  - , 

(22) 

g 
l ,  ~/~)= (.~.)~~): 

(23) 

8 
+E 

Nb13 

E 
.Jl3 =1 
J~Ja 

(j_) 

Nb° 

• ~0 (x -~O,  T, 9a) (x___~d ' T, t) E (1 - ~9) qb " t) l . ~ G  r °~; + qb = 
ib= 1 

( 1 - Bqa'J~)~ qa4~) (x--->qg) ~x "v05/13 ) rb,b , e (ffO~)) ~ (.~%), T) Sh, b - -  + 
(F(Jl3)c~Fq~)) E 
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8 N~ 

+E E ( l - - r - b , s  ) b,s 
.i~= 1 

Jp¢:]8 

Nm0 

+ E (1 -- [~(Ja'C0)b,ct kua'(x)b,ot (x-)(J~)) (T (frO) _ T (x--)(ia))) S qS'et)b,ot (X--+(J8)) { .-v ~(jS) ~ (F(/8"r--~ (m) ; 

Ob~-I 

(24) 

v x ---)(ct) e D (°0 , ot = 1, Nso : 

( 1 - 8(1 c0) C% aT (x(C0____~) _ (1 - 8 ~  )) O (c0 + 
0t ~v 

Nnl 
+ (1 - 8(ccg)) E C (x -')(/)) k (x -+(j;) 7") S ((~'/') (x -+0))) O~.) , ) 

-3.oqb" " ' o~,b + 
Jl=l OA ~(11 E (F 01 cqO m) 

Nm 2 

+ y_., ( l -  ~ . d u )  ~ - r ) ~ ,  - 
.]2 = 1 

aT .~u2)~trv2),_o.~)) (~X----~] 1 ) 
+ 

8 Nml3 

+ ~ y ,  (1 _ 8s.a. s(c%)) k~i@ (x(m) (r(x_.~ie)) - T (x(m)) S(C%)c~..~ (x(m) [ev~'~(O°~'r-~D '~') + 

+ 

Nmo 

E 
a'=l 

_(ct,c() k(Ct.d) (v((,')) (c~¢£). (ct). 
( 1 - 6 6 c t s )  . T(x(Ct))(T(x(eO))Scts (x )[ , .  D(m (d) " 

• ,. ct.s ,." x E (  c - O  ) 

v = (~ - 13] ~)) + (l  - ~ h r  _ qext U')ext t 
(et) 

Sext 

+ (1 - 13~") J ('~) ~,."~) + (l  - ~(2)  ,~co°v .. . ,  ~onv" qint a~int (T (x (ju)) - T Cv(ct)'~ $((~) 
(ct) 

Sint 

(25) 

(26) 

(x u')) = If+ l ,  :,<) = (xo) <) ; E 
1 , x ¢]0 = (Xt3n) (j.) ; 

(27) 

T (x(% 1 ~o  = T o (x(C°). (28)  

The considered system of equations above is a rather universal statement of the problem of  mathemati-  
cal simulation the thermal regime of  three-dimensional structures. Let us reveal some features of  representation 
of the equations that enter into this system. 
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Equation (16) describes the temperature distribution in each j~th distributed structural element J8 = 
1 N6, 8 = 1 2. The control 8-functions ~~), ~0, ~i6,v~) ~~,i~) and ~'¢~) used here have the following values: 

' ~ ~ ~'~,S,D ' '.I..S,S ' 5 , S , 0 ~  

y0"~,...)={0, i f i = m ,  
i . . . .  1 , if i~m,  

where m is the number of the corresponding term in Eq. (17). Thus, these control 8-functions ensure the flex- 
ible formation and modification of the thermal model for the distributed structural elements. 

Of similar meaning are the control 8-functions 81 c~), 8~, a), 8 m J0 zmd,) Zm,i~) and Zm,cc) in Eq. (25) for 
- 3 , o t , b '  ~ 4 , ~ , ' b '  ~ 5 . 0 t . s  ' ~ 6 , ~ , s  

the thermal state of the concentrated elements and also in the 8-functions 13~,0(x ~6) )  and 13~(37(x--~)) in expres- 

sion (19) determining the heat source in Eq. (17), in the functions [3~ ~), I~i~i~ ) [39~J~), and [3~i~ a) in expression 

(24) tbr the boundary conditions of Eq. (17), and 13~ c¢~, i = 1, 4, in expression (26) that reveal the structure of  

operating heat releases in Eq. (25). 
In the present work, we will simulate the support system of the thermal regime of the spacecraft by 

assigning the corresponding components in the heat-source functions and in the expressions for the boundary 
conditions of the equations under consideration. It is assumed that each component of the heat-source function 
simulates the operating thermophysical process in criterial tbrm. As necessary, to determine the refined transfer 
coefficients, we can use in addition the corresponding program software. 

It should also be noted that Eqs. (17) and (25) simulate, apart from the thermal state of the distributed 
and concentrated elements, the boundary and contact thermal interaction between the structural elements. Fur- 
thermore, determination of the elements of  the boundary conditions in the form of Eq. (22) at the external 
boundaries enables one to change flexibly the structure of the boundary thermal interaction. 

Analysis of the aforesaid formulation of the problem of mathematical simulation of the thermal regime 
for spatial structures indicates that this system of equations can be flexibly transformed in order to allow for 
the features of a specific design. This is achieved by selecting a certain combination of the equations consid- 
ered, by selecting the required structure of  each equation, and by constructing the corresponding thermal cou- 
pling system, which is mapped in the boundary and thermal-conjugation conditions. 

Thus, the mathematical model considered tbr the thermal regime of the spacecraft structure can be used 
in combinatorial analysis of the thermal regime of space objects, since in the course of investigations it allows 
one to change the parameters and structure of  the model. 

As indicated above, the combinatorial change in model parameters is usually implemented through the 
change in the thermophysical characteristics, the transfer coefficients, the source function in Eqs. (16)-(28), and 
also on changing the thermal-conjugation conditions (incidence conditions) and in the case of change in the 
number of the model elements. 

In practice this means that a researcher has a chance not only to study the thermal state of the basic 
and reference variant of the given structure of  the spacecraft but also, if necessary, by refining flexibly the 
model without changing simultaneously its structure, to determine the thermal state of modifications of  the 
considered structure of the spacecraft. 

The second direction of the combinatorial change in the mathematical thermal model is its structural 
change. When the thermal-model structure is changed both the "simplification" and "complication" of  the prob- 
lem can be used, which is associated both with the necessity of a more comprehensive representation of  oper- 
ating conditions for the structure and with restrictions that can be imposed by the computaters used. 

The "simplification" of the problem can consist, for example, in determining the mean-integral thermal 
state of the structural elements, when it is possible to use models with concentrated parameters. Under the 
conditions of orbital flight, a similar approach allows one to determine with a sufficient degree of accuracy the 
thermal state of the structure and systems of  automatic spacecraft. In designing a descent spacecraft (DS) in- 
tended for returning a payload to the earth, researchers are often oriented to the investigation of a one-dimen- 
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Jl Co.c nu-at  

elements loading fl i heat sources 

Generalized thermal model ~ 

-------1 Structure of spacecraft 

Units, drives, systems 

[ Primary structural elements 

Shells 
(thin-walled spatial structures) 

~ - ~  Rod structures 

- - ~  Multilayer panels 

Volumetric structural elements with 
simple and complicated configuration 

I Decompgsition of generalized[_ 
mathematical model | 

Zero-dimensional model 
(concentrated parameters) ~'~ 

One-dimensional model ~'* 

Pseudo-one-dimensional rnocld 

Quasi-one-dimensioml model ~'* 

Multidimensional 
cell complex ]'~ 

Two-dimensional model ]'4 

Three-dimensional model ~ -  

Fig. 1. Structure of  a combination of mathematical models for the thermal 
regime of spacecraft structures. 

sional process of heating and destruction of its thermal protection at individual points. It should be noted that, 
in this case, use is made of the model with distributed parameters. 

Under the conditions of multiple-factor spatial thermal loading, the "complete" formulation of the ini- 
tial problem is usually used. If necessary, its "simplification" is conducted by decreasing the dimensionality of 
the models of distributed elements or by replacing distributed elements by a certain set of concentrated ele- 
ments or subelements of lower dimensionality. In the latter case, use can be made of quasi-one-dimensional 
models and models based on a multidimensional CW-complex, etc. 

In turn, the "complication" of  the tbrmulation of the initial problem is implemented by means of in- 
creasing the number of elements, included in the mathematical model for the thermal regime of the structure 
considered, by "increasing" the dimensionality of distributed elements, and by complicating thermal couplings 
due to the application of more complete mathematical models of the external thermal actions and heat transfer 
between the elements of a given structure and models of the processes in systems and units. 

3. Algorithmic and Program Software of Combinatorial Simulation of Thermal Regime for 
Spacecraft. Thus, the generalized formulation of the problem analyzed can be considered as basic for imple- 
menting the combinatorial simulation of the thermal regime for space structures, Within the framework of this 
formulation in the course of investigation one can use both the models with concentrated parameters and mod- 
els with distributed parameters of the corresponding dimensionality and any combination of them. In addition, 
it is possible to include into the number of the models with distributed parameters pseudo-one-dimensional 
design models for the thermal regime of spacecraft, quasi-one-dimensional models for two-dimensional shell 
structures, a multidimensional CW-complex tbr three-dimensional structural elements, etc. The structure of the 
considered combination of mathematical models is presented in Fig. 1. 

The algorithmic implementation of this combination of mathematical models is oriented to the finite- 
difference method. In the finite-difference approximation of differential operators and the lormation of the grid 
thnction of heat sources, each node of the difference grid, according to the integro-interpolation method, is 
made to correspond to the volume element [2]. The values of the variables and the functions investigated at 
these nodes are determined as mean-integral ones within the limits of the volume element. In addition, each 
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volume element is made to correspond to the area elements, within the limits of which the mean-integral ther- 
mal action of the heat sources is considered and thereby their nodal values are determined. 

The algorithm based on a modified method of "skeleton" structures [3] is used as a basic one. For 
simulating the thermal regime of individual shell structures, multilayer panels, etc., use is made of the tradi- 
tional variable-direction method and locally one-dimensional schemes [2]. To calculate the thermal regime of 
the structures in a one-dimensional approximation (involving pseudo-one-dimensional and quasi-one-dimen- 
sional formulations, and also a multidimensional CW-complex [4]), the algorithm oriented to the graph of the 
thermal model of a general form [5] is used as the most universal one. In simulating the thermal regime of the 
spacecraft structure in a zero-dimensional formulation, iteration methods for solving algebraic systems are ap- 
plied. 

The developed program software is oriented to the employment of present-day personal computers and 
is intended to solve research and design problems. The program software is constructed so as to enable one, in 
the combinatorial formulation, to investigate the thermal regime of both the individual systems and elements of 
the spacecraft structure and the spacecraft as a whole. The GRAPH, BRIZ, and ELEMENT systems are the 
basic elements of the program software. 

The GRAPH software system ensures combinatorial analysis of the thermal regime tbr truss and rod 
structures of unpressurized spacecraft and makes it possible to calculate the temperature fields in spatial e!e- 
ments of the spacecraft structure in pseudo-one-dimensional and quasi-one-dimensional formulations. 

The BRIZ software system determines temperature fields and operating thermal loading in the space- 
craft structures that share the "axial" or "peripheral" coordinates. They can include radiative heat exchangers, 
elements of the spacecraft body, antennae, fuel sections, etc. This system supports one of  the versions of the 
PANEL software system intended to investigate the thermal state of heat-exchange panels of unpressurized 
spacecraft. The ELEMENT software system synthesizes the possibilities of the GRAPH and BRIZ systems and 
allows one to investigate the thermal state of unpressurized spacecraft of any design. In the course of investi- 
gation not only the temperature fields in the structure are calculated but also the thermal state of radioelec- 
tronic equipment and various systems and units of the spacecraft are determined as well as the parameters of 
the environmental thermal action. 

N O T A T I O N  

D, domain of definition of the problem; Dm2, spatial domain that corresponds to the two-dimensional 
element; Dml, the same, to the one-dimensional element; Dm0, the same, to the concentrated structural element; 
Dh, domain of definition of the element of the convective thermal control system (segment of a pipeline or a 
heat pipe); Dh0, domain of definition of the hydraulic units; /", boundary of domain D; L, operator of the 
mathematical model of the thermophysical process; OL, operator of joining conditions; % operator of balance 
relations; L o Laplace operator for the parabolic-type equation; F, right-side function of  the mathematical model 
of the thermophysical process; ~ ,  right-side function of balance relations; qv, function of the volumetric heat 
source; qhr and qs, components of the volumetric and surface heat sources in the heat-source function for the 
distributed element; Qv, volumetric heat source operating in the concentrated element; Qhr, volumetric heat re- 
leases in the concentrated element; qb, qext, qint, densities of  boundary, external, and internal heat fluxes, re- 
spectively; [3, ~5, 7, 8-functions that determine the appearance of the thermal model; T, temperature; 9~, thermal 
conductivity; p, density; Cr,, heat capacity at constant pressure; Cm = CFrn, mass heat capacity; rn, mass; ~conv, 
coefficient of convective heat exchange; k, coefficient of surface heat transfer between structural elements; t, 
time; x, ~ spatial coordinate; S, area; V, volume; N, number of elements; Nm2, number of two-dimensional 
elements; Nml, the same, of one-dimensional elements; Nm0, the same, of concentrated structural elements; Nh, 
number of elements of the convective thermal control system (segments of pipelines or heat pipes); Nh0, num- 
ber of hydraulic and contact units of  the thermal control system. Superscripts and subscripts: j, distributed 
structural element; ml ,  one-dimensional structural element; m2, two-dimensional structural element; c~, concen- 
trated structural element; h, heat carrier; C~h, conjugation element of heat pipes or pipelines of the convective 
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cooling system; [3, 5, direction for multidimensional structural elements; b, boundary; s, surface; int, internal 
heat factors; ext, external heat factors; conv, convective heat transfer; v, volumetric heat source; hr, heat re- 
lease; s, v, surface component of the volumetric source; b,b, boundary thermal interaction between the distrib- 
uted elements; b,s, boundary thermal interaction with the surface of the distributed elements; b,c~, boundary 
thermal interaction with the surface of  the concentrated elements; s,b, surface thermal interaction with the 
boundaries of the distributed elements; s,s, surface themaal interaction of the distributed elements; s,~, surface 
thermal interaction with the surface of the concentrated elements; ~,b, thermal interaction of the concentrated 
elements with the boundaries of the distributed elements; c~,s, surface thermal interaction of the concentrated 
and distributed elements; 0t,~x, surface thermal interaction of the concentrated elements; O, initial instant of 
time, initial coordinate; fin, finite instant of time, finite coordinate. 
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